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ABSTRACT 

Three integration schemes, namely, coherent, non-
coherent, and semi-coherent integration, and their variants 
are described in this paper for signal detection and 
tracking in such applications as pulsed Doppler radar and 
GPS receiver. We adopt a unified approach to present 
such integration schemes as best approximations to the 
likelihood ratio test (LRT) when the signal models are 
partially known to different extents. Formulas for the 
conditional probability density functions (pdfs) of the 
sufficient statistic under alternative hypotheses as well as 
the probability of detection (Pd) and probability of false 
alarm (Pfa) are given. Integration improvement factors and 
integration losses are then formulated. Connections of the 
semi-coherent integration scheme to the cyclic 
autocorrelation function, the discrete-time Wigner-Ville 
transform, and the radar ambiguity function are also 
outlined. Although most of the results are available in the 
literature, they are scattered in different textbooks and 
research papers. By presenting them in a cohesive and 
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concise manner, the paper can serve as (1) an introductory 
material with key references for those who would like to 
study the subject further, (2) a quick reference for those 
who would like to compare these integration schemes, 
and (3) an integrated approach under varying conditions. 
Simulation results are presented to compare these 
integration schemes in terms of detection performance (Pd 
and Pfa) as a function of signal to noise ratio (SNR) and 
integration interval under two operating conditions. One 
is for a signal with constant Doppler frequency and the 
other is for a linear frequency modulation signal (i.e., a 
chirp signal). We show the curves of the input SNR 
required under different chirp rates so as to maintain the 
same detection performance, the resulting LRTs for the 
different approaches, as well as simulated comparisons 
between trade-offs of Pd versus SNR. 

INTRODUCTION 

In this paper, we study several integration schemes 
frequently encountered for signal detection and parameter 
estimation in such applications as pulsed Doppler radar 
and GPS receivers. The signals employed in these two 
fields are quite different in their operating modes and 
waveforms (e.g., frequencies, modulations and power 
levels). Even different names are given to similar 
integration schemes: pulse integration for radar vs. post-
correlation integration for GPS. Nevertheless, the 
principles and methodologies are common and our goal is 
to integrate the approaches toward advanced detection 
capabilities. For an experienced reader, he or she may go 
directly to the section Simulation Results and Analysis 
that highlights the comparative study. 

For a signal buried in noise, a single signal sample is 
typically not suitable for detection simply because the 
signal in such raw samples is too weak (i.e., low SNR) at 
a high sampling rate. To improve detection performance, 
multiple successive samples are therefore processed 
jointly, which also serves the purpose of data 
compression. In a pulsed Doppler radar, a pulse-matched 
filter is applied to signal samples to accumulate the signal 
energy per pulse while averaging out noise. Similarly, in a 
GPS receiver, a despreading correlator is applied to signal 
samples per code epoch, which is 1 ms long for GPS C/A-
codes. The resulting measurement per pulse or per code 
epoch is typically complex-valued, containing real and 
imaginary parts, also known as in-phase and quadrature-
phase components. 

Pulse measurements in radar or pre-detection correlations 
in GPS are further processed before a decision is made to 
ascertain the presence or absence of a desired signal. 
Decision making is carried out by means of threshold 
comparison and detection performance is characterized in 
terms of probability of detection (Pd) and probability of 
false alarm (Pfa) for a detection threshold. One way to 
optimally process these measurements is to reduce them 
into a sufficient statistic, denoted by λ. Under different 

conditions, this leads to different integration schemes, 
which are the subject of study in this paper.  

Indeed, we choose a unified way to present various 
measurement-combining (or integration) schemes as the 
best approximation by a sufficient statistic of the 
likelihood ratio test (LRT) resulting from hypothesis 
testing when the underlying signal model is partially 
known to a different degree. There are two hypotheses of 
interest. One is the null hypothesis, denoted by H0, under 
which measurement only contains noise. The other is the 
alternative hypothesis, denoted by H1, under which the 
signal of interest is present in the noisy measurement. 
Once a sufficient statistic is given, a major step that 
follows is to derive the conditional probability density 
functions (pdfs) of the sufficient statistic under the two 
hypotheses, namely, P(λ|H0) and P(λ|H1), respectively, 
from which Pd and Pfa are evaluated for a given threshold. 
When closed-form solutions are not available, empirical 
formulas and numerical/graphic means are often used to 
facilitate design and implementation. 

Coherent integration (here “coherent” means matched in 
time/phase) works on complex-valued measurements in 
which the signal’s phases from measurement to 
measurement are in close alignment, thus allowing 
constructive addition of signal whereas the phase of noise 
is random from measurement to measurement, resulting in 
cancellation. Coherent integration can attain the highest 
integration gain ideally (100% efficiency). To achieve a 
build up of signal amplitude, the phase relationship 
between measurements has to be known or estimated, 
which is, however, sometimes difficult. 

In non-coherent integration, phase information is 
discarded. It works on real-valued data samples by adding 
up the magnitude (an envelope detector) or squared 
magnitude (i.e., the power, a squared law detector) or 
sometimes log-magnitude of measurements. Because of 
the nonlinear operation, its analysis becomes more 
complicated. Squaring effectively removes phase 
variations from sample to sample (also unknown data bits 
if it exists) but it also squares the noise, allowing it to add 
up. Noncoherent integration is less efficient than coherent 
integration but it is often used when there are significant 
mismatches in signal phase due to Doppler frequency 
errors, unknown data modulation, and even receiver clock 
drifts. 

Both coherent and non-coherent integrations schemes are 
well documented in textbooks and widely used in 
practical systems. A relatively new one is the semi-
coherent integration scheme, which also has many other 
names. Semi-coherent integration can be defined as the 
sum of the products of the input signal with the conjugate 
of a delayed copy of itself. Since all conjugate products 
have a common phase argument (under constant 
frequency), they add “coherently.” Each product 
contributing the signal’s “power” to the sum, it is 
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therefore termed “semi-coherent.” However, the delayed 
conjugate product operation also squares the noise, thus 
allowing it to add. It is less efficient than the coherent 
integration but slightly more efficient than the non-
coherent integration in terms of integration loss and more 
robust against frequency variations. 

In practical implementations, the coherent and non-
coherent as well as semi-coherent integration schemes are 
typically used in combination. That is, a certain number 
of coherent integrations are followed by another number 
of non-coherent or semi-coherent integrations. The 
division of the total number of measurements into 
coherent and non-coherent or semi-coherent is a design 
parameter that needs to be trade-studied for a particular 
application at hand. This aspect is not covered in this 
paper. Another aspect that is not covered either is the 
post-detection integration (also called binary integration, 
“M out of N” detection, or classifier fusion). References 
can be found in [Richards, 2005; Kaplan and Hegarty, 
2006]. 

When a single measurement is modeled as a constant 
signal A in a white zero-mean Gaussian noise with 
variance σ2, the signal to noise ratio per measurement is 
defined as (SNR)1 = A2/σ2 and it completely specifies the 
conditional pdfs and detection performance. When such N 
measurements are processed by coherent integration, the 
outcome is again a constant signal NA in a white zero-
mean Gaussian noise with variance Nσ2. In this case, the 
output SNR easily can be calculated as (SNR)CI = NA2/σ2 
= N(SNR)1. When compared to the single measurement 
SNR at the input, the output SNR is higher, proportional 
to the number of measurements integrated, thus achieving 
100% efficiency. The ratio of the output SNR over the 
input SNR is called integration improvement factor in 
radar [Mahafza and Elsherbeni, 2004] or processing gain 
in GPS, denoted by GCI, as: 

N
SNR
SNR

NG CI
CI ==

1)(
)(

)(  (1a) 

)(log10
)(
)(

log10)( 10
1

10 N
SNR
SNR

dBNG CI
CI =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  (1b) 

For nonlinear integration schemes, however, the output 
SNR is not well defined. This is because with cross-
product terms, it is difficult to properly separate signal 
from noise after such a nonlinear operation as squaring. 
As a result, with noise amplified by signal in the cross-
product terms, nonlinear integration schemes are less 
effective and the resulting variance is signal-dependent. 

There are two ways to quantify integration improvement 
for nonlinear integration schemes. One intuitive way is to 
define an equivalent SNR at the output of a nonlinear 
integration scheme such that the integration improvement 
factor can be calculated using the same formula as in Eq. 
(1). A rationale behind this approach is this. According to 

the central limit theorem, the sum of a large number of 
independent identical distributed (i.i.d.) samples 
converges to a Gaussian distribution with suitable mean 
and variance, which can be used to calculate the 
equivalent output SNR. 

A more rigorous way, however, is to specify an 
equivalent SNR at the input (i.e., a single measurement 
SNR) for a nonlinear integration scheme. The SNR 
required to achieve a specific Pd given a particular Pfa 
after N samples are integrated using the nonlinear 
integration scheme is denoted by (SNR)NLI, which is 
smaller than (SNR)1. They are related by: 

)()()( 1 NGSNRSNR NLINLI ×=  (2) 

where GNLI(N) is the nonlinear integration improvement 
factor. 

The nonlinear integration improvement factor GNLI(N) for 
a nonlinear integration scheme is typically smaller than 
the integration improvement factor GCI(N) = N for 
coherent integration. Their ratio is usually called the 
integration loss defined as: 

)(/)(/)( NGNNGNGL NLINLICINLI ==  (3) 

Most of the results of integration schemes are available in 
the literature but scattered in different textbooks and 
research papers. In this paper, we compile them within a 
unified framework and present it in a cohesive and 
concise manner. We hope the paper can serve as an 
introductory material with key references listed for those 
who would like to study the subject further and a quick 
reference for those who would like to use it in their work. 

The paper is organized as follows. We start with a review 
of the major results for detection of signal in noise with a 
single measurement. We then present coherent, non-
coherent, and semi-coherent integration schemes as ways 
to combining multiple measurements, respectively. We 
next analyze results of comparative simulation study and 
finally conclude with a summary and future work.  

REVIEW OF DETECTION THEORY WITH 
SINGLE MEASUREMENTS 

Consider a complex measurement z consisting of a 
complex signal s and a complex noise w. We want to 
determine if the measurement z contains only noise w 
(denoted as the null hypothesis H0) or both the desired 
signal s and noise w (denoted as the alternative hypothesis 
H1): 

wzH =:0  (4a) 
wszH +=:1  (4b) 

The signal is modeled as s = Aejθ with A being a constant 
amplitude and θ a constant phase and the noise w is a 
complex white Gaussian noise with its real and imaginary 
components being of zero mean and variance σ2. 
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The probability density functions (pdfs) that describe the 
measurement to be tested under each of the two 
hypotheses are denoted by p(z|H0) and p(z|H1), 
respectively. For an “optimal” choice between our two 
hypotheses, there are several criteria to choose. This 
includes the Neyman-Pearson criterion in which the 
decision is made to maximize the probability of detection 
Pd under the constraint that the probability of false alarm 
Pfa does not exceeds a predefined value, the Bayes 
minimum cost criterion, and maximization of the 
probability of a correct decision among others [Therrien, 
1989; Kay, 1998]. The optimization under any of these 
criteria leads to the ubiquitous likelihood ratio test (LRT): 

η
0

1

)|(
)|()(

0

1

H

H

Hzp
Hzpz

<
>

=Λ  (5a) 

ηln
)|(
)|(ln)(ln

0

1

0

1

H

H

Hzp
Hzpz

<
>

=Λ  (5b) 

d

H

H

Tz
0

1

)(
<
>

λ  (5c) 

where η, lnη and Td are detection thresholds for the 
corresponding formulations. 

In Eq. (5a), Λ(z) is the likelihood ratio test and in Eq. 
(5b), lnΛ(z) is called the log likelihood ratio test. The 
latter is computationally more efficient as most pdfs are in 
the form of exponentials and as a monotonic increasing 
operation, the taking of logarithm does not affect the 
detection performance (Pd and Pfa). 

In Eq. (5c), λ(z) is called the sufficient statistic, which, if 
it exists, is a function of the measurement z and has the 
property that the measurement z appears in the likelihood 
ratio or the log likelihood ratio only through λ(z). In other 
words, knowing the sufficient statistic λ(z) is as good as 
knowing the actual data z in making an optimal decision. 
As shown later in this paper, various integration schemes 
are such a sufficient statistic under different signal 
models. 

The optimal detection problem now becomes solving for 
the detection threshold from equations of Pd and Pfa 
expressed in terms of the sufficient statistic λ(z) and 
signal and noise model parameters. This typically 
involves two steps. A first step is to manipulate the 
conditional measurement pdfs, p(z|H0) and p(z|H1), so as 
to obtain the sufficient statistic pdfs, denoted by p(λ|H0) 
and p(λ|H1), respectively. A second step is to evaluate Pd 
and Pfa of the sufficient statistic as a function of the 
threshold Td: 

∫
+∞

=
dT

d dHpP λλ )|( 1
 (6a) 

∫
+∞

=
dT

fa dHpP λλ )|( 0
 (6b) 

Ideally, the threshold Td can be “solved” from Eq. (6b) for 
a given level of false alarm Pfa. The probability of 
detection Pd is then calculated from Eq. (6a) as a function 
of the probability of false alarm Pfa with the threshold Td 
as an intermediate. This Pd vs. Pfa relationship is the 
receiver operating characteristic (ROC) curve. Although 
the integrals can be expressed in terms of pdfs, there are 
typically no closed-form solutions except for simple 
cases. Numerical methods are popular means used to 
present the results in tables or plots. 

From Eq. (4), the measurement pdf can be written as: 

})()(exp{1)( 2

*

2 σπσ
szszzp −−−

=  (7) 

where the superscript *  stands for complex conjugate. 
Under H0, s = 0 and under H1, s ≠ 0. The log likelihood 
ratio is: 

)}Re{2(1)(ln **
2 sszsz −=Λ

σ
 (8) 

where Re{z} means the real part of z. Since the second 
term on the right hand side of Eq. (8) does not depend on 
the measurement, a sufficient statistic can be taken as: 

}Re{)( *zsz =λ  (9) 

Under H1 with s = Aexp(jθ), Eq. (9) can be further written 
as: 

}Re{}Re{)( 2** θλ jwAeAwsssz −+=+=
 }Re{ θjwAeE −+=  (10) 

where E = A2 is the total energy in the expected signal s. 

From Eq. (9), let ζ = s*z, which is a complex Gaussian. It 
is easy to show that under H0, ζ ~ N{0, 2σ2E}. Similarly, 
under H1, ζ ~ N {E, 2σ2E}. Since the power of the 
complex Gaussian noise splits evenly between the real 
and imaginary parts of ζ, it follows that the sufficient 
statistic λ ~ N{0, σ2E} under H0 and λ ~ N {E, σ2E} 
under H1. In other words, only half of the noise power 
competes with the signal energy in this case. The 
following equations can be established: 

⎥
⎦

⎤
⎢
⎣

⎡
−= )(1

2
1

2E
TerfP d

fa
σ

 (11a) 

})2({
2
1

2
1

σ
EPerfcerfcP fad −= −   

 })()2({
2
1

1
1 SNRPerfcerfc fa −= −  (11b) 

EPerfT fad
21 )21( σ−= −  (11c) 
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where (SNR)1 = A2/σ2 = E/σ2 is the signal to noise ratio 
for a single measurement, erf(x) is the error function, and 
erfc(x) = 1 – erf(x) is the complementary error function 
defined as: 

∫ −=
x

t dtexerf
0

22)(
π

 (12a) 

)(12)(
2

xerfdtexerfc
t

t −== ∫
+∞

−

π
 (12b) 

In the above derivations, it is implied that the signal s is 
perfectly known. However, it is merely the case in 
practice. It is rather more reasonable to assume that the 
initial phase is unknown and to model the signal as 

θjess ~= where the phase angle θ is a random variable 
uniformly distributed over [0, 2π) and independent of the 
signal components { s~ }. The pdf of H0 is unchanged but 
that of H1 now explicitly depends on θ, denoted by p(z| 
H1, θ): 

})
~()~(exp{1),|( 2

*

21 σπσ
θ

θθ jj eszeszHzp −−
−=  

 }
~~cos|~|2exp{1

2

***

2 σ
θ

πσ
sszszz +−

−=  (13) 

Using the Bayesian rule for random parameters, the 
unconditional pdf p(z| H1) can be obtained by averaging 
the conditional pdf p(z| H1, θ) over θ as: 

∫=
π

θθ
π

2

0
11 ),|(

2
1)|( dHzpHzp  

 )|
~|2(}

~~
exp{1

202

**

2 σσπσ
zsIsszz H+
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where the last term I0(▪) is the modified Bessel function of 
the first kind (zero-order) defined as: 

∫=
π

θ θ
π

2

0

)cos(
0 2

1)( dezI z  

The log-LRT can be written as: 
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To avoid direct calculation of the Bessel function as well 
as the natural logarithm, it is desired to approximate 
ln[I0(▪)] with a simple monotonically increasing function. 
It was shown in [Richards, 2005] that for small x, ln[I0(x)] 
≈ x2/4 and for large x, ln[I0(x)] ≈ x. In other words, the 
optimal detector is well approximated by a magnitude 
squaring operation or a square law detector for x < 5 dB 
whereas by an envelope detector when x > 10 dB. A 
practical sufficient statistic can thus be defined as: 

Envelope Detector: 

 
d
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Square Law Detector: 
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The performance of the envelope detector specified in Eq. 
(16a) can be established by noting that zs *~  ~ N{0, 
2σ2E} under H0 and ~ N {A2, 2σ2E} under H1. Then, 
under H0, |~| *zs=λ  is Rayleigh distributed: 

⎪⎩

⎪
⎨
⎧

<

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

00

0
2

exp)|( 2

2

2
0

λ

λ
σ

λ
σ
λ

λ EEHp  (17) 

And under H1, λ is Rician distributed: 

⎪⎩

⎪
⎨
⎧

<

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=

00

0)(
2

exp)|( 202

22

2
1

λ

λ
σ
λ

σ
λ

σ
λ

λ I
E

E
EHp  (18) 

From Eq. (17), the probability of false alarm can be 
calculated as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
== ∫

+∞

2

2

00 exp)|()|(
σ

λλλ
E

TdHpHP d

T
fa

d

 (19) 

Inverting this equation gives the detection threshold as: 

fad PET ln2σ−=  (20) 

From Eq. (18), the probability of detection can be 
calculated, with the threshold from Eq. (18), as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

2

21 ,)|(
σσ

λ
E
TEQHP d

Md
 

 )ln,)(( 1 faM PSNRQ −=  (21a) 

where QM(▪, ▪) is the Marcum’s Q function defined as: 

[ ] dttIttQM )()(exp),( 0
22

2
1 αατα

τ
∫

+∞

+−=  (21b) 

Compared to the coherent detector given in Eq. (9), the 
envelope detector requires higher SNR to achieve the 
same performance. This extra SNR required to maintain 
the same detection performance is called the detector loss, 
a price paid for not knowing the signal phase. With Pfa = 
10-6, the envelope detector requires 0.6 dB higher SNR 
than the coherent detector to achieve Pd = 0.9 and about 
0.7 dB more at Pd = 0.5. 

Instead of averaging the H1’s pdf over unknown 
parameters to obtain an unconditional pdf as in Eq. (14), 
another approach is to use the generalized likelihood ratio 
test (GLRT), in which the likelihood ratio is expressed as 
a function of the unknown signal parameter. In addition to 
averaging the GLRT over the region of the unknown 
parameter, which may be assumed uniformly distributed 
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if there is no better model available, another approach is 
to obtain an estimate of the parameter by maximizing the 
likelihood ratio over the unknown parameter and then to 
compare the maximized likelihood ratio to the threshold 
for detection. The maximization can be done analytically 
or numerically and the latter is the theoretic basis for 
parametric search (sequential or parallel) in detection. 

Another signal parameter that is usually unknown is the 
signal amplitude A, which is assumed to be a 
deterministic scale factor. Eqs. (11b) and (21a) do not 
depend explicitly on A (or the noise power σ2) but rather 
on their ratio (SNR)1 for evaluating the detection 
performance. However, a practical implementation 
requires specific values to set up the detection threshold. 
One is to use a reference signal with unit energy ŝ  such 
that θθ jj esAess ˆ~ == . For weak signals, another approach 
is to implement a locally optimum detector (LOD) for 
unknown A, which maximizes the slope of the likelihood 
ratio at A = 0 while keeping a fixed Pfa [Kassam, 1988]. 

COHERENT INTEGRATION – OPTIMAL 
COMBINING OF MULTIPLE MEASUREMENTS  

After introducing the signal model, this section first 
formulates the perfect case with known signal. It then 
presents the formulation with unknown signal phase. 
Direct summation is then presented followed by the use of 
FFT as an approach to coherent integration. 

Signal Model 

Consider N measurements where each measurement zn, 
made at time index n, has the following model: 

nnn wsz += ,   n = 0, …, N-1 (22) 

where sn is the signal and wn is a complex white Gaussian 
noise with Re{wn} ~ N(0, σ2) and Im{wn} ~ N(0, σ2). 
Putting the N measurements into a vector format gives: 

[ ]TNzzz 10 ,, −= L  (23a) 

[ ]TNsss 10 ,, −= L  (23b) 

[ ]TNwww 10 ,, −= L  (23c) 

The joint pdf for N complex measurement samples is: 

})()(exp{1)( 22 σσπ
szszzp

H

NN
−−−

=  (24) 

where H is the Hermitian (conjugate transpose) operator. 

General Formulation for Perfect Signal Model 

The log likelihood ratio is: 

)}Re{2(1)(ln 2 sszsz HH −=Λ
σ

 (25) 

A sufficient statistic can be defined as: 

}Re{)( zsz H=λ  (26) 

From Eq. (26), it can be seen that the LRT leads to a 
rather simple sufficient statistic, which specifies the data 
processing to be performed on the measurements. It 
affords several interpretations [Richards, 2005]. The term 
sHz is a dot product of the complex vectors s and z. It can 
be viewed as a correlation operation. This dot product 
represents an FIR filtering operation, evaluated at the 
particular instant when the equivalent finite impulse 
response s completely overlaps with the data vector z. It 
can also be viewed as a matched filter, thus detecting the 
presence of the mean vector in the data. 

Under H1 with sn = Anexp(jφn), Eq. (26) can be further 
written as: 

}||Re{}Re{)(
1

0

1

0

2 ∑∑
−

=

−
−

=

+=+=
N

n

j
nn

N

n
n

HH neAwAwsssz φλ  

 }Re{
1

0
∑

−

=

−+=
N

n

j
nn

neAwE φ  (27) 

where ∑
−

=

=
1

0

2||
N

n
nAE  is the total energy in the expected 

signal s and E = NA2 in the equal mean case with An = A. 

Let ζ = sHz, which is a complex Gaussian because it is a 
sum of Gaussian random variables. It is easy to show that 
under H0, ζ ~ N{0, 2σ2E}. Similarly, under H1, ζ ~ N 
{E, 2σ2E}. The sufficient statistic λ ~ N{0, σ2E} under 
H0 and λ ~ N {E, σ2E} under H1. Eqs. (11a), (11b), and 
(11c) for the probability of false alarm, probability of 
detection, and detection threshold respectively, are 
directly applicable. 

Eq. (26) is called a coherent detector since it assumes the 
perfect knowledge of the signal s. From Eq. (26) or Eq. 
(27), the signal power after the operation (a dot product) 
is 22 NA  whereas the noise variance is 2

wNσ . The SNR at 
the coherent detector’s output, denoted by (SNR)CD, is 
then related to (SNR)1 by: 

12

2

22

2

)()( SNRNNAE
E

ESNR CD ====
σσσ

 (28) 

This improves the single measurement SNR by a factor of 
N. 

General Formulation with Unknown Phase 

In practice, however, the signal s is not perfectly known. 
Assume that the initial phase is unknown and the signal 
can be written as θjess ~= where the phase angle θ is a 
random variable uniformly distributed over [0, 2π) and 
independent of the signal components { ns~ }. The pdf of 
H0 is unchanged but that of H1 now explicitly depends on 
θ, denoted by p(z| H1, θ): 

)}~()~(1exp{1),|( 221
θθ

σσπ
θ jHj

NN eszeszHzp −−−=  
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)}~~cos|~|2(1exp{1
22 sszszz HHH

NN +−−= θ
σσπ

 (29) 

which can be averaged over θ, leading to the 
unconditional pdf p(y| H1): 

∫=
π

θθ
π

2

0
11 ),|(

2
1)|( dHzpHzp  

 )|
~|2()}~~1(exp{1

2022 σσσπ
zsIsszz

H
HH

NN +−=  (30) 

The log-LRT is: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Λ 20

|~|2lnln
σ

zsI
H

 (31) 

Similar to Eqs. (16a) and (16b), the same approximations 
can be used to obtain the sufficient statistic as: 

Envelope Detector: 
d

H

H

H Tzsz
0

1

|~|)(
<
>

=λ  (32a) 

Square Law Detector: 
d

H

H

H Tzsz
0

1

2|~|)(
<
>

=λ  (32b) 

The performance of the envelope detector specified in Eq. 
(32a) can be established by noting that zs H~ ~ N{0, 
2σ2E} under H0 and ~ N{E, 2σ2E} under H1 where E is 
the total energy in s~ . Then, |~| zs H=λ  follows a Rayleigh 
distribution under H0 as given in Eq. (17) and a Rician 
distribution under H1 as given in Eq. (18). Similarly, Eqs. 
(19), (20), and (21a) for the probability of false alarm, 
detection threshold, and probability of detection, 
respectively, are directly applicable [Skolnik, 2001]. 

Direct Summation for Constant Signal 

In the above analysis, the detection of a signal in noise is 
treated as a likelihood ratio test. The formulation of joint 
detection with multiple measurements leads to the 
structure of coherent integration (a dot product/a matched 
filter/a correlator/an finite impulse response (FIR) filter) 
followed by detection. A coherent detector is used when 
the signal model is perfectly known whereas an envelope 
detector or a square law detector is used when the initial 
phase of the signal is not known. In the following, we 
discuss two practical implementations of coherent 
integration. They are (1) direct summation and (2) 
coherent integration with the fast Fourier transform 
(FFT). 

With the noise characteristics known, it is the signal 
model (i.e., its structure and parameters and our 
knowledge of it) that determines the solution of optimal 
detection. When the signal is constant, the direct 
summation of N measurements is given by: 

∑∑∑
−

=

−

=

−

=

+===
1

0

1

0

1

0
1

N

n
n

N

n
n

T
N

N

n
nDS wszzζ  (33) 

where 1N is an N×1 vector of all ones. 

From the above analysis, it is clear that λ(z) = Re{ζDS} is 
the optimal detector for the case where sn = A. The signal 
amplitude A does not appear in the detector but rather a 
reference signal of unit is used instead. When the phaseθ 
is unknown, the optimal detector can be either λ(z) = |ζDS| 
or λ(z) = |ζDS|2 depending on the magnitude of the sum. 

For the optimal detector in Eq. (33) based on the model of 
a constant signal, we are now to analyze its behavior 
when the signal is actually a sine wave with a constant 
frequency fd. Under this condition, Eq. (33) can be written 
as: 

∑
−

=

+−=
1

0)sin(
)sin(

)}1(exp{
N

n
n

sd

sd
sdDS w

Tf
NTf

NTfjA
π

π
πζ  

 N
Tf

Tf
NTf

NTfNTfjA
sd

sd

sd

sd
sd π

π
π

ππ )sin(/)sin()}1(exp{ −=  

 ∑
−

=

+
1

0

N

n
nw  (34) 

When the Doppler frequency is small, fdTsN ~ 0 and 
sinc(πfdTsN) = sin(πfdTsN)/πfdTsN ~ 1. The direct sum can 
be simplified into 

∑∑
−

=

−

=

+≈+−≈
1

0

1

0
)}1(exp{

N

n
n

N

n
nsdDS wANwANNTfjπζ  (35) 

The signal power after the direct sum (only consider the 
real component) is 22 NA  whereas the noise variance is 

2σN . The direct sum’s SNR, denoted by (SNR)DS, is then 
given by (SNR)DS = 22 NA / 2σN  = N 22 /σA  = N(SNR)1. 
It improves the input SNR by a factor of N. However, 
when the Doppler frequency is large, the SNR 
improvement vanishes rather quickly in the form of a 
sinc-function. 

Coherent Integration with FFT 

For a signal with a constant Doppler frequency, the LRT 
can be first averaged over the unknown initial phase and 
then expressed as a function of the unknown frequency fd. 
Averaging again over fd within the unambiguous interval 
from 0 to 1/Ts (or -1/2Ts to 1/2Ts) leads to the following 
sufficient statistic: 

∫=
sT

H
CI dffszIz

/1

0
0 |))(~|2()(ζ  (36a) 

where s~  is a signal replica defined as: 

[ ]TN fsfsfs )(~,),(~)(~
10 −= L  (36b) 

}2exp{)(~ nTfjfs skkn π=  (36c) 

with fk being a test frequency (which also differs from the 
true signal s in amplitude and initial phase).  
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For practical implementation, the integral in Eq. (36a) is 
replaced with a filter bank with N filters as: 

∑
−

=

=
1

0
0 |))(~|2(1)(

N

k
k

H
CI fszI

N
zζ , 

 with
s

k NT
kf = , k = 0, …, N-1 (37) 

The test function can be approximated by the following 
sufficient statistic: 

|)(~|max|)(|max)( zfsfzz H
kkkCIkCI ≈≈λ  (38) 

The coherent sum in Eq. (38) can be viewed as successive 
rotation of the phase of measurements by an amount 
specified by the signal replica so as to align the 
measurements to the same phase prior to summation. It in 
fact implements a matched filter with a filter parameter fk. 
Since the frequency is unknown, it is searched over a 
range of possible values either in parallel or in sequence.  

When the filter parameter is discretized into a set of N 
parameters with a frequency spacing inversely 
proportional to the signal interval, i.e., fk = k/NTs, k = 0, 
…, N-1, it represents a conventional filter bank, which 
can be realized with FFT. For the filter in which fk ≈ fd, its 
output is close to Eq. (32) with a SNR increased by a 
factor of proportional to N.  

NON-COHERENT INTEGRATION SCHEMES 

The amplitude and phase of a signal to be detected are 
typically unknown. Ignoring the amplitude in the LRT 
does not affect the detection performance and a reference 
signal of unit amplitude is typically used. The unknown 
phase can be averaged out from the conditional pdf or 
from the LRT, leading to an envelope detector or a square 
law detector as in Eq. (32). Intuitively, taking magnitude 
(or squared magnitude or log-magnitude) effectively 
removes the unknown phase (as well as phase modulation 
if it exists on the signal). After the phase information is 
discarded, combining magnitude samples is referred as 
non-coherent integration, which is analyzed below. 

The measurement model in Eq. (22) can be expressed in 
terms of its real and imaginary parts or equivalently in 
magnitude and phase as: 

}exp{ nnnnnnn jrjwsz ϕηξ =+=+=  (39a) 

where 

)cos(}Re{ nnnnn rws ϕξ =+=  (39b) 

)sin(}Im{ nnnnn rws ϕη =+=  (39c) 
22 })(Im{})(Re{ nnnnnn wswszr +++==  (39d) 

})Re{/}(Im{tan 1
nnnnn wsws ++= −ϕ  (39e) 

22*2
nnnnn zzr ηξ +==  (39f) 

The joint pdf for r and ϕ is given by: 

})cos(exp{}
2

exp{
2

),( 22

22

2 σ
ϕ

σπσ
ϕ rAArrrp +

−=  (40) 

The pdf for r alone is obtained by integrating Eq. (40) 
over ϕ, yielding: 

)(}
2

exp{),()( 202

22

2

2

0 σσσ
ϕϕ

π rAIArrdrprp +
−== ∫  (41) 

Similarly, the pdf for ϕ  alone can be obtained by 
integrating Eq. (40) over r. 

Under H0, A = 0 (noise alone), Eq. (40) becomes the 
Rayleigh probability density function: 

}
2

exp{)( 2

2

2 σσ
rrrp −=  (42a) 

π
ϕ

2
1)( =p , )2,0( πϕ ∈  (42b) 

Under H1, A ≠ 0, Eq. (41) is the Rician probability density 
function. Also when A/σ2 is very large, Eq. (41) becomes 
a Gaussian probability density function with mean A and 
variance σ2. 

Let r = [r0, …, rN-1]T be a vector of N magnitude samples. 
The joint pdfs under H0 and H1 are 

∏
−

=

−=
1

0
2

2

20 }
2

exp{)|(
N

n

nn rrHrp
σσ

 (43a) 

)(}
2

exp{)|( 20

1

0
2

22

21 σσσ
ArIArrHrp n

N

n

nn∏
−

=

+
−=  (43b) 

With the same approximation as used to derive Eq. (32b) 
or (16b), the log-LRT becomes 

∑∑
−

=

−

=

≈⎥⎦
⎤

⎢⎣
⎡=Λ

1

0
4

221

0
20 )(lnln

N

n

n
N

n

n ArArI
σσ

 (44) 

Combining all constants into the threshold leads to a 
practical sufficient statistic as: 

d

H

H
N

n

N

n
nn Tzr

0

1
1

0

1

0

22 ||
<
>
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−

=

−

=

λ  (45) 

which specifies a noncoherent integration detection rule 
using the square law detector. A similar noncoherent 
integration detection rule using the envelope detector can 
result if the log-LRT is approximated using Eq. (32a) or 
(16a). 

To determine the detection performance, we start with 
calculating the pdfs for the sufficient statistic in Eq. (45). 
First, let q = r2 and we determine the pdfs for q from Eq. 
(43) as: 

)(}
2

exp{
2

1)( 202

2

2 σσσ
Aq

IAqqp +
−=  (46) 
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When A = 0, q = r2 = 22 ηξ +  obeys the Chi-square (χ2) 
distribution with two degrees of freedom, which is also an 
exponential distribution. For A ≠ 0, it obeys a non-central 
Chi-square (χ2) distribution. When the degrees of freedom 
exceed 30, a non-central Chi-square (χ2) distribution can 
be accurately approximated by a Gaussian distribution. 

Since the random variables rn (and the corresponding qn = 
2

nr ) for all n are independent, the pdf for the sufficient 
statistic λ can be derived as the convolution of individual 
pdfs: 

×−−=
−

})(
4

exp{)
)(4

()|( 12
2

1

1
21 SNRN

SNRN
Hp

N

σ
λ

σ
λλ  

 ))(( 2
1

1 σ
λSNRNIN −

 (47) 

where (SNR)1 = A2/σ2 as previously defined and IN-1(▪) is 
the modified Bessel function of order N-1. 

When A = 0, the pdf for the sufficient statistic λ is χ2–
distributed with 2N degrees of freedom, which can be 
written as: 

}
2

exp{
)(2

1)|( 2
1

20 σ
λλ

σ
λ −

Γ
= −N

NN N
Hp  (48) 

where Γ(N) = (N-1)! is the Gamma function. As a special 
case of the gamma density, the Erlang density reduces to 
the exponential pdf when N = 1. 

The probability of false alarm is obtained by integrating 
the pdf in Eq. (48) from the threshold to infinity as: 

⎟
⎠
⎞

⎜
⎝
⎛ −−== ∫

+∞

1,1)|()|( 00 N
N

TIdHpHP d

T
fa

d

λλλ  (49) 

where the last term is called Pearson’s form of the 
incomplete gamma function defined as 

( ) ∫
+ −

=
1

0 !
,

Mu M

d
M

eMuI τττ
 (50) 

The probability of detection is obtained by integrating the 
pdf in Eq. (47) from the threshold to infinity as: 
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⎞
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⎝

⎛
+  (51) 

Closed-form solutions generally do not exist for these 
integrals. Numerical solutions are often used to generate 
tables and curves. However, some empirical 
approximations exist for manual calculation. One 
example is Albersheim’s equations [Richards, 2005]. 

Non-coherent integration is less efficient than coherent 
integration. The non-coherent integration gain is always 
smaller than that of the coherent integration for the same 
number of measurements. This integration loss, estimated 
somewhere N  between and N, is approximated by a 
simple formula [DiFranco and Rubin, 1980]: 

 5.5)log(10 −= NLNCI
,   dB (52) 

Another approximation for the integration loss factor 
[Barton, 1988; Curry, 2001] is: 

1

1

)(
)(1

SNR
SNRLNCI

+
=  (53) 

Yet another approximation, which is accurate within 0.8 
dB given by [Peebles, 1998], is in terms of integration 
improvement factor as: 

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= )(log

6.46
)/1(log

1)235.01(79.6)( 10
10 N

P
PNG fa

dNCI
 

 )](log01831.0)(log14.01[ 2
1010 NN +− , dB (54) 

Using Eq. (53), the output SNR after non-coherent 
integration can be written as: 

NCINCI

CI
NCI L

SNRN
L

SNRSNR 1)()()( ==  

 
1

1
1 )(1

)()(
SNR

SNRSNRN
+

=   (55) 

Strictly speaking, the integration loss factor or 
improvement factor ought to be specified by calculating 
an equivalent SNR at the input (i.e., a single measurement 
SNR) that is required to achieve a specific Pd given a 
particular Pfa after N samples are integrated using a 
nonlinear integration scheme. This is because the output 
SNR for a nonlinear integration scheme is not well 
defined due to cross-product terms. 

However, some equivalent SNR is frequently used at the 
output of a nonlinear integration scheme. One definition 
is given in [Kay, 1998] as: 

}|{
}|{}|{)(

0

01

HzVar
HzEHzESNR LNI

−
=  (56) 

where the square root is used for variance in the 
denominator so that the output SNR is the ratio of the 
same units as the input SNR. 

As another example, consider the non-coherent 
integration scheme using an energy detector in Eq. (45). It 
is easy to show that 

2
0 2}|{ σλ NHE =  (57a) 

4
0 8}|{ σλ NHVar =  (57b) 

)2(}|{ 22
1 σλ += ANHE  (57c) 
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According to Eq. (56), the SNR for the sufficient statistic 
in Eq. (45) is: 

12

2

_ )(
222

)( SNRNNASNR EDNCI ==
σ

 (58) 

Compared to coherent integration, the corresponding 
integration loss is: 

NNL EDNCI 4.12_ ≈=  (59) 

which is consistent with the loss estimates given before. 

Consider yet another example where the integration is 
done of N outputs from an envelope detector as: 
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λ  (60) 

which can be viewed as if the log-LRT Eq. (44) is 
approximated using Eq. (32a). The envelope detector’s 
output follows a Rayleigh distribution Eq. (42a) under H0 
and a Ricean distribution Eq. (41) under H1, respectively. 
The conditional means and variances can be computed as: 

σπ
2

}|{ 0 =HrE  (61a) 

2
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}|{2}|{ 1
222

1 HrEAHrVar −+= σ  (61d) 

Both Eqs. (61a) and (61b) can be derived from Eqs. (61c) 
and (61d) by setting A = 0. Assume that {rn} are i.i.d. and 
then the conditional means and variances of λ can be 
computed from those of rn in Eqs. (61a) through (61d) as: 
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The output SNR of non-coherent integration with an 
envelope detector according to Eq. (60) is: 
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The following approximations are given by [Lowe, 1999]: 
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 (SNR)1 ≥ 2.8  (64b) 

When (SNR)1 « 1, the signal is too weak to detect from a 
single measurement. The lower order term in Eq. (64a) 
indicates that the output SNR is proportional to (SNR)1 
but to the square root of N at this regime. From Eq. (64a), 
the loss can be written as: 

NNL EDNCI 05.1)4(4
_ ≈

−
≈

π
π  (65) 

Other effects that further introduce SNR loss include 
amplitude fluctuations such as Swerling models 
[Richards, 2005] and phase noise [Richards, 2003], which 
are not covered in this paper. 

SEMI-COHERENT INTEGRATION SCHEMES 

For a signal z of length N with an amplitude A, there are 
an unknown initial phase φ0 and an unknown Doppler 
frequency fd. The initial unknown phase can be averaged 
out as done previously. The resulting likelihood ratio can 
be further averaged over the phase increment caused by 
the unknown Doppler per sampling interval, denoted by ϕ 
= 2πfdTs (the total phase is φn = φ0 + ϕ n), which may be 
assumed uniformly distributed over [0, 2π). The log-LRT 
can be written as: 

ϕϕ
π

π

dszAILn H |))(~|2(
2
1 2

0
0∫=Λ  (66) 

The Bessel function I0(▪) in Eq. (66) can be approximated 
by a Taylor series for small values of A. According to 
[Selin, 1965], the result is: 
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 (67) 

where 

∑
+=

−=
N

kn
knnk zzS

1

*  (68) 

The only term in Eq. (67) that depends on the signal’s 
Doppler phase is the sum with Sk for k ≠ 0 whereas the 
other two terms involve the total power S0 from both the 
signal and noise. It was suggested in [Wirth, 2001] to use 
the sum with Sk in Eq. (68) as a test function: 

∑
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kK ST
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which is also called the autocorrelation estimate (ACE) 
test because Sk is related to the ACE of the signal series 
{zn} for the time lag kTs by: 

k
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kn
knnk S
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kN −
=

−
= ∑

+=
−

11
1

*ρ  (70) 

The parameter K is at most N-1. When K = 0, we have k = 
0 and T0 = S0. This corresponds to non-coherent 
integration (with a square law detector or by power-
combination) discussed in the previous section. K = 1 
leads to k = 1, which corresponds to the so-called tone 
detector to be discussed later. In general, the detection 
performance improves with increasing K. However, with 
a large k, the number of samples available for calculating 
Sk is reduced. Typically, K/N = ¼ ~ ½. 

For a signal with constant Doppler zn = Aexp(jϕn), the 
product of the input signal with the conjugate of a delayed 
copy of itself, i.e., )exp(2* kjAzz knn ϕ=−

, has a phase 
argument independent of n. As a result, the summation in 
Eq. (68) adds *

knnzz −
 “coherently” for all the measurement 

contributions over n. But what each measurement 
contributes to the sum is the signal “power.” It is in this 
sense that the summation is called “semi-coherent.” 
Delayed squaring, although removing phase variations 
from sample to sample (and also unknown data bits), also 
squares the noise, thus allowing it to add up. It is 
therefore less effective than coherent integration. 

For a small k, an additional SNR is required to achieve the 
same detection performance as an ideal coherent 
integration, which is the integration loss mentioned 
earlier. As noted in [Wirth, 2001], the ACE test is 
expected to operate on a single signal and a weak signal 
may be suppressed by a stronger signal due to the 
nonlinear nature of the test. It was shown in [Wirth, 2001] 
that for K = N/2, the loss compared to a filter bank is only 
0.5 dB. Since a filter bank may suffer from a straddling 
loss about 1 dB, there may even be a gain of 0.5 dB 
compared to a filter bank. Another advantage of the ACE 
test is that it is more robust against frequency variations. 
In the next section, we will show these results via 
computer simulations. 

Now consider the special case where K = 1. The 
summation of *

knnzz −
 over n for k = 1 is: 
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where κn is a weighting factor. 

The test function z in Eq. (67) is called a tone detector in 
[Clarkson, 1997]. The test ζ for κn = 1 is known as the 
semi-coherent statistic, which has been studied since 1960 
[Reed and Swerling, 1962; Lank, Reed, and Pollon, 
1973]. The statistic is also known as the weighted linear 

predictor for different choices of κn, [Kay, 1989] and 
studied in [Clarkson, Kootsookos, and Quinn, 1994]. 

Following the approach of [Clarkson, 1997], the additive 
noise in Eq. (39a) can be arranged into a multiplicative 
one as: 

))}(2(exp{ nn Afnjz υπθ ++=  (72) 

where f is an unknown signal frequency. 

Since υn is related to the original noise wn through 
multiplication by an exponent with purely imaginary 
argument, it is also a complex white normal random 
variable with the same variance. 

The tone detector In Eq. (71) can be written as: 
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 (73) 

It follows that, for κn = 1, 

)1(}{ 2 −== NAZEmZ  (74a) 
)1(2)32(2}){Re( 42222 −+−=−= NNAmZE ZZi σσσ  (74b) 

)1(22}){Im( 42222 −+=−= NAmZE ZZq σσσ  (74c) 

0)}Im(){Re( =−− ZZ mZmZE  (74d) 

From the above equations, it is easy to see that for A = 0, 
)1(2 422 −== NZqZi σσσ  and )1(4 42 −= NZ σσ . According to 

Eq. (56), the output SNR of the tone detector in Eq. (71) 
for κn = 1 is: 
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σ

 (75) 

which is related to the energy detector in Eq. (58) as: 

2
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_
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EDNCI

TD

SNR
SNR  (76) 

Comparison of the noise-only variances shows that 
NN EDTD

4242 8)1(4 σσσσ =<−= . In other words, 
NNEDTD 2/)1(/ 22 −=σσ . This shows that the SNR required 

to achieve the same detection performance by the energy 
detector (i.e., the square law detector) is 2  higher (or 
1.5 dB higher) than that required by the tone detector 
[Clarksons, 1997] and is also the asymptotic result of 
[Lank, Reed, and Pollon, 1973]. 

Recently, this kind of semi-coherent integration scheme 
has been used for differentially coherent PN code 
acquisition in DS-SS CDMA receivers [Zarrabiadeh and 
Souza, 1997] and for assisted acquisition of weak GPS 
signals [Choi et al., 2002]. It was estimated in [Yu, 2006] 
that the improvement of sensitivity with such a 
differential combining is 1.2 dB to 1.6 dB over the 
noncoherent integration for Pd = 0.1 and Pfa = 10-3, which 
is consistent with the above estimate. In fact, a more 
rigorous derivation based on the joint probability density 
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function of magnitude and phase for consecutive 
measurements was used in [Yu, 2006]. It also explained 
by means of Cauchy-Schwartz inequality that the noise in 
the tone detector is always smaller than that in the energy 
detector. This can be seen by comparing Eq. (45) and Eq. 
(71) with A = 0 as:  
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If the input signal is a chirp signal (linear frequency 
modulation), the product terms in Eq. (67) contains a 
monotonic signal with a frequency of (2βTsk) where β is 
the chirping rate and Tsk is the delay time. This is a beat 
frequency between the signal and its delayed copy, which 
can be estimated by performing an FFT to the sequence of 
conjugate products. The chirp rate can then be determined 
from the estimated beat frequency [Zaino et al., 2000]. 
The test function becomes: 
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mnn N

knjzzkm πζ  (78) 

Without noise, this is equivalent to a matched chirp filter. 
The performance is close to the coherent integration when 
the SNR is large. However, at low SNR, signal 
suppression can occur. 

It is interesting to note that the test function specified in 
Eq. (78) is similar in structure to the cyclic 
autocorrelation function [Gardner, Napolitano, and Paura, 
2005] defined at frequency α for lag parameter τ as: 
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As a final note, consider a symmetric window of length 
M+1 centered at time index n, take a delay index m that is 
also symmetric relative to n, and then vary it over the data 
window, i.e., *

mnmn yy −+
for m ∈ [-M/2, M/2]. Apply the 

Fourier transform over these delayed conjugate products 
over m, in contrast to n in Eq. (78), and this leads to the 
discrete Wigner-Ville distribution (DWVD) defined as: 
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kmjyyknWV π  (80) 

where the index k corresponds to the frequency at 
2k/Ts(M+1). 

In addition, the similarity of the cyclic autocorrelation 
function, the discrete Wigner-Ville transform, and the 
semi-coherent integration with the radar ambiguity 
function may be recognized. However, the relationship 
between them is only superficial. As pointed in [Gardner, 
1991], the concepts, theory, and applications underlying 
these definitions have little in common. 

SIMULATION RESULTS AND ANALYSES 

For the simulations presented below, the following signal 
model is used: 

]})(2[exp{),,( 0
22

0 φβπβφ ++== nTnTfjAfss ssddnn   (81) 

where A is the signal amplitude, fd is an unknown Doppler 
frequency, β is an unknown chirping rate, φ0 is an 
unknown initial phase uniformly distributed between 0 
and 2π, and Ts = 1/fs is the sampling interval with fs being 
the sampling frequency.  

To simulate a desired SNR level, the signal amplitude A is 
adjusted according to: 

2
10

)10( 10
/ NC

sTA =  (82) 

where C/N0 is the corresponding carrier to noise ratio in 
dB-Hz. 

In the simulations, a complex noise is used in which the 
real and imaginary parts are real white zero-mean 
Gaussian with variance σ2 = 1. Under the Nyquist rate, 
the signal passes through a low pass filter with an 
equivalent bandwidth of ±fs/2. For Ts = 0.001 s, A = 1 
corresponds to C/N0 = 30 dB-Hz. This is equivalent to 
SNR = 10log10(A2/σ2) = 0 dB. Similarly, A = 0.5 leads to 
C/N0 = 24 dB-Hz and equivalently SNR = -6 dB. We will 
use the input signal (single measurement) SNR values to 
plot simulation results whenever applicable. 

We generate the probability of detection (Pd) as a function 
of single measurement (input) SNR (varying from -30 dB 
to 10 dB) for a fixed probability of false alarm (Pfa =     
10-3). Six integration and detection schemes are 
compared, which are illustrated in Fig. 1. They are: 
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Fig. 1 – Block Diagram of Six Compared Integration Schemes 
 
 

6 - Semi-Coherent for First Lag with FFT: 
|}})({max{|)( *

2:01:1_ −−= NNFFTSCI zzdiagFFTzλ  

where FFT{v} stands for an FFT operation applied to the 
vector v which may be zero-padded to reduce the size of 
frequency bin if necessary, max{v} stands for finding the 
maximum value of v, and diag(v) stands for a diagonal 
matrix with v along the principal diagonal. 

We first consider the case of a constant Doppler 
frequency with β = 0. The signal model reduces to 

)}2(exp{ 0φπ += nTfjAs sdn  (83) 

and the product of the signal and the conjugate of its 
delay copy at lag k is: 

}2exp{2* kTfjAss sdknn π=−
 (84) 

which does not depend on n and the beat frequency is 
therefore fdTsk = -0.25 Hz for k = 1, Ts = 0.001 s, and fd = 
-250 Hz. 

We ran the six integration schemes with noise only 
10,000 times so as to determine the detection threshold 
that could produce the desired probability of false alarm 
at Pfa = 10-3 (i.e., the threshold was crossed 10 out of 
10,000 times). We then ran the six integration schemes 

again 10,000 times for each of the SNR values with both 
signal and noise present. The probability of detection was 
estimated as the number of runs in which the detection 
threshold was crossed, normalized by the total number of 
runs. 

Figs. 2, 3, and 4 show the Pd vs. SNR curves for N = 20, 
40, and 100, respectively. As expected, the curves are 
shifted toward the left (toward low SNR values) by 3 and 
7 dB for the coherent integration scheme as the 
integration time is increased by a factor of 2 and 5, 
respectively. In these figures, the curves keep about the 
same shape and the SNR required to achieve Pd > 0.5 
maintains the following order: 

Ideal Coherent < Practical Coherent with FFT < Semi-
Coherent up to First N/2 Lags < Semi-Coherent for First 
Lag < Semi-Coherent for First Lag with FFT < Non-
Coherent 

The practical coherent integration scheme implemented 
with FFT (i.e., the green curve) is behind the ideal 
coherent integration (i.e., the blue curve) by more or less 
2 dB, that is, an integration loss of 2 dB at Pd = 0.9 for 
instance. The detection threshold of the practical coherent 
with FFT is higher than the ideal coherent to satisfy the 
same Pfa. This is because the optimization across all  

z-1z-1 z-1z-1 z-1z-1

Re{▪}Re{▪}

(▪)2(▪)2

(▪)*(▪)*

| ▪ || ▪ |

maxmax

><><∑
−

=

1

0

N

n
∑

−

=

1

0

N

n

FFTFFT | ▪ || ▪ | ><><

(▪)*(▪)*

∑
−

=

1

0

N

n
∑

−

=

1

0

N

n

><><

><><

><><

∑
−

=

1

1

N

n
∑

−

=

1

1

N

n

∑
−

=

1N

kn
∑

−

=

1N

kn

∑
−

=

1N

Kn
∑

−

=

1N

Kn

(▪)2(▪)2

(▪)2(▪)2

(▪)2(▪)2

FFTFFT maxmax| ▪ || ▪ |

><><

▪

▪

▪

▪

▪

▪▪

▪▪

▪
sn

wn

zn

z*
n-1 z*

n-k z*
n-K

λCI

λCI_FFT

λNCI

λSCI_K

λSCI_1

λSCI_FFT

Ideal Coherent
Integration

Practical Coherent
Integration with FFT

Semi-Coherent
Integration for
First Lag with FFT

Non-Coherent
Integration

Semi-Coherent
Integration for
First K Lags

Semi-Coherent
Integration for
First Lag



14 

 
 

-30 -25 -20 -15 -10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

single measurement SNR, 10log10(A2/σ2), dB

P
d

Pfa = 0.001, σz = 2σ = 2, N = 20, runs = 10000

 

 

coherent
coherent, fft
non-coherent
semi-coherent, k=1
semi-coherent, k->N/2
semi-coherent, k=1, fft

Fig. 2 – Pd vs. SNR for N = 20 (β = 0 Hz/s) 
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Fig. 3 – Pd vs. SNR for N = 40 (β = 0 Hz/s) 
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Fig. 4 – Pd vs. SNR for N = 100 (β = 0 Hz/s) 
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Fig. 5 – Pd vs. SNR for N = 100 (β = 37.45 Hz/s) 
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Fig. 6 – Pd vs. SNR for N = 100 (β = 749 Hz/s) 
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frequency bins tends to maximize noise. Besides, the ideal 
coherent only considers the noise component in the real 
part whereas the practical coherent with FFT takes on 
noise in both the real and imaginary parts via an envelope 
detector. When the signal frequency is between two 
frequency bins, an additional saddle loss may occur even 
though the FFT is zero-padded to four times the original 
size (i.e., 80) to improve the frequency resolution in the 
simulation. The integration loss is a price to pay for not 
knowing the signal exactly. 

The semi-coherent with FFT (the black curve) is slightly 
better than the non-coherent (the red curve) but both are 
behind the semi-coherent for first lag (the aqua curve). 
For the case of β = 0 with a constant Doppler frequency, 
the terms of conjugate products have a constant phase 
term. As a result, the semi-coherent with FFT produces 
about the same output as the semi-coherent for first lag 
when the signal is present. However, its detection 
threshold is higher for the same reasons explained above. 
The resulting detection performance is about the same as 
the non-coherent, which exhibits an integration loss of 0.9 
dB at Pd = 0.9 as compared to the semi-coherent for first 
lag. 

The semi-coherent up to first N/2 lags (the purple curve) 
is behind the practical coherent with FFT (the green 
curve) with an integration loss of about 0.3 dB for N = 20 
and about 0.7 dB for N = 100 and an integration gain of 
1.2 dB for N = 20 and 2.8 dB for N = 100 over the semi-
coherent for first lag, respectively. 

In the second simulation, we consider the case with β ≠ 0. 
This linear frequency modulation introduces a frequency 
variation and will adversely affect the coherent 
integration. On the other hand, the product of a signal and 
the conjugate of its delay copy can be written as: 

×−=− }exp{}2exp{ 222* kTjkTfjAss ssdknn βπ  
 }22exp{ 2knTj sβπ  (85) 

where the first two terms do not depend on n but the third 
term is a monotone signal with frequency of 2βkTs. Figs. 
5 and 6 show the effect of chirping rate on the detection 
performance of the six integration schemes for β = 0 Hz/s, 
37.45 Hz/s, and β = 749 Hz/s, respectively. Both the 
coherent and non-coherent remain the same, unchanged 
by chirping rate. The semi-coherent for first lag changed 
very little and the semi-coherent for first lag with FFT has 
virtually no change. This is because the beat frequency for 
the conjugate products is 2βkTs = 2×749×1×0.001 = 1.5 
Hz/s and only causes a phase change of 0.15 cycle (54 
degrees) over the integration time of 100 ms for k = 1 but 
it is 7.5 cycles for k = 50. It therefore has more effect on 
the semi-coherent up to first N/2 lags as the purple curve 
shifted rightwards in Figs. 5 and 6. 

However, the biggest effect is on the practical coherent 
with FFT. Because for the coherent integration scheme, 

the signal frequency changed by Δf = βΝTs = 
749×100×0.001 = 74.9 Hz and the signal energy was 
spread over 74.9 Hz/10 Hz ≈ 8 frequency bins. 

Figs. 7 and 8 show the loss of integrated signal peak as a 
function of the chirping rate for integration time of N = 20 
and 40, respectively. The three schemes shown, namely, 
the semi-coherent for the first lag (the blue curve), the 
practical coherent with FFT (the green curve), and the 
semi-coherent up to first N/2 lags (the red curve), all 
follow the same sinc-function in their loss. The loss of the 
semi-coherent up to first N/2 lags is faster than that of the 
semi-coherent for the first lag because the latter only 
contains one beat frequency term at 2βTs whereas the 
former contains many terms at 2βkTs for k > 1. The first 
few nulls of the sinc-function show up for the practical 
coherent with FFT. 

Fig. 9 shows the loss of integrated signal peak for 
integration time of N = 20, also as a function of the 
chirping rate but expressed in terms of a sweep factor. 
The sweep factor κ is the number of frequency bins 
crossed over by the signal during the integration time, 
which is related to the chirping rate by: 

2)( NTs

κβ = , κ = 0, 1, …, 1
2

−
N  (86) 

In Fig. 9, the frequency bin is Δf = 50 Hz for N = 20. A 
unit sweep factor corresponds to a chirping rate of 2500 
Hz/s. Because of this large step size, the nulls are not 
obvious in this figure as evident in Fig. 7, which is the 
initial portion of Fig. 9. However, the envelope of signal 
peak loss is clear for the three schemes. 

In the third simulation, the input SNR that is required to 
obtain the detection performance of (Pd = 0.9, Pfa = 0.001) 
is determined by Monte Carlo runs when the chirping rate 
is varied. For an integration time of N samples, the 
frequency bin is 1/TsN.  

Figs. 10 and 11 show the input SNR vs. the sweep factor 
for N = 20 and 100, respectively. In Fig. 10, the frequency 
bin is Δf = 50 Hz. A unit sweep factor corresponds to a 
chirping rate of 2500 Hz/s. As expected the coherent (the 
blue curve), the non-coherent (the red curve), and the 
semi-coherent for first lag with FFT (the black curve) 
remain unchanged for different β. However, the practical 
coherent with FFT (the green curve) crosses (needs a 
larger input SNR, thus having a worse detection 
performance) the semi-coherent up to first N/2 lags (the 
purple curve) at 1.8 (3750 Hz/s). The practical coherent 
with FFT crosses the non-coherent at 3 (7500 Hz/s), the 
semi-coherent up to first N/2 lags crosses the non-
coherent at 4 (10000 Hz/s), and the semi-coherent for first 
lag crosses the non-coherent at 6 (15000 Hz/s). 

In Fig. 11, the frequency bin is Δf = 10 Hz. A unit sweep 
factor corresponds to a chirping rate of 100 Hz/s. Again, 
the coherent (the blue curve), the non-coherent (the red 
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curve), and the semi-coherent for first lag with FFT (the 
black curve) remain unchanged for different β. However, 
the practical coherent with FFT (the green curve) crosses 
the semi-coherent up to first N/2 lags (the purple curve) at 
0.8 (83 Hz/s). The practical coherent with FFT crosses the 
non-coherent at 6.8 (680 Hz/s, which is consistent with 
Fig. 6), the semi-coherent up to first N/2 lags crosses the 
non-coherent at 17 (1700 Hz/s), and the semi-coherent for 
first lag crosses the non-coherent at 37 (3700 Hz/s). It is 
shown that the semi-coherent up to first N/2 lags is 
slightly more robust than the practical coherent with FFT 
against frequency change as was previously observed in 
[Wirth, 2001]. At a first glance, the semi-coherent for first 
lag with FFT behaves quite similar to the non-coherent in 
both detection performance and robustness against 
frequency changes. However, the FFT operation provides 
an estimate of the underlying chirping rate, which is 
valuable for some applications. 

Comparing Fig. 11 to Fig. 10 shows that except for the 
coherent and non-coherent as well as the semi-coherent 

for first lag with FFT, all other integration schemes 
become more vulnerable (i.e., experience larger 
integration loss) to changes in frequency as the integration 
interval gets longer. Yet, longer integration interval 
provides better processing gain (i.e., integration 
improvement) as shown in Fig. 4 as compared to Figs. 2 
and 3. However, a signal is more likely to be subject to 
changes in frequency, either due to Doppler frequency 
shift or to clock frequency drift, over longer intervals. It is 
therefore desired to develop such an integration scheme 
that is robust against frequency changes while providing 
larger integration improvements over long integration 
intervals. 

One possible approach is to extend the semi-coherent for 
first lag with FFT to other lags. In other words, instead of 
making straight summations as in the semi-coherent up to 
first N/2 lags, FFT is used to coherently add up the 
conjugate products. This and other approaches are under 
study and will be reported in future papers [Yang et al., 
2007; 2008]. 
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Fig. 8 – Loss of Integrated Signal Peak for N = 40 
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CONCLUSIONS 

In this paper, the coherent, non-coherent, and semi-
coherent integration schemes and their variants were 
presented as the most appropriate approximation to the 
sufficient statistic of a log likelihood ratio test when the 
signal model was partially known to different degrees. It 
summarized the formulas for conditional probability 
density functions, probabilities of detection and false 
alarm as well as integration improvement factors and 
integration losses for these integration schemes. Results 
of Monte Carlo simulation were presented to compare the 
detection performance of these integration schemes in 
terms of Pd vs. SNR at a fixed Pfa for signals with constant 
Doppler frequency and for chirp signals. It also showed 
the curves of input SNR required for different chirp rates 
so as to maintain the same detection performance. It can 
be used as an easy graphic means to rank the integration 
schemes for different operation conditions.  
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